摘要:坡面产流是土壤本身特性与外界 影响 因素相互作用的结果,它们之间具有明显的非线性输入输出关系。在 分析 坡面产流和神经 网络 模型具有某些相似的基础上,利用径流站观测资料,建立了小流域坡面产流量的三层前向网络模型(BP算法),并显示了具有较好的模拟预测效果。
关键词:人工神经网络 坡面产流 BP算法
1 引言
一般而言,整个流域的不同区域,其地形、地貌、植被、土壤、人类活动等条件不尽相同。模拟流域的产流、汇流、土壤侵蚀、产沙及其泥沙输移特性,首先需将流域概化成若干流域特性近似的 计算 单元-称为小流域单元。Sins et al[1]将流域分成若干计算单元,每个单元有它自己的流域边界,称为子流域。国内不少 研究 者也采用这种按 自然 水系划分子流域的 方法 [2]。
将流域概化为若干子流域的方法,对考虑流域降雨及下垫面条件的空间变化,建立整个流域的产流、汇流、土壤侵蚀、产沙和泥沙输移模型提供了很大的方便。为此,以这种自然水系划分方法为基础,把小流域划分为如下形式,见图1所示,其中图1(a)为小流域自然水系图;图1(b)为小流域按水系汇流划分模式;图1()为每一个小单元产流模式,即径流输出关系图,包括降水、区间来水、本单元上时刻的径流量和上一单元(或多个单元)的输出到本单元的输入径流量等输入变量,以及本单元调节作用后的输出径流量。 |
|
图1 小流域产流示意图 Sketh f runff struture in the sall atershed |
|
2 坡面产流模式分析
由于地形、地貌、下垫面条件、土壤含水量空间分布及人类活动影响的不同,坡面上形成了两种不同的产流方式,即“超渗坡面流”和“蓄满坡面流”。坡面上一部分由于坡度较缓,导致雨水排泄不畅而使土壤含水量较高,而另一部分坡度较陡,雨水在坡面上滞留时间短,使土壤含水量较低。此外,下垫面植被条件的差异也会导致土壤含水量的变化。因此,在每个单元子流域的坡面上,既可能产生“超渗坡面流”,也可能产生“蓄满坡面流”。然而,对此如何判断, 目前 研究较少。黑龙江省宾县径流实验站[3]通过对产流方式与下垫面特征、雨强特性等影响因素的分析,认为区别两种不同产流方式的重要标志是雨强的作用。在蓄满产流情况下,损失量与降雨强度无关,满足缺水量后,降雨均成径流。雨强对超渗产流则起主要作用。
未完...点击下方链接下载完整文档